

UNIT - IV
Iterative Process Planning: Work breakdown structures, planning guidelines, cost and
schedule estimating, Iteration planning process, Pragmatic planning.

Project Organizations and Responsibilities: Line-of-Business Organizations, Project
Organizations, evolution of Organizations.
Process Automation: Automation Building blocks, The Project Environment.

10. Iterative process planning
A good work breakdown structure and its synchronization with the process framework are
critical factors in software project success. Development of a work breakdown structure
dependent on the project management style, organizational culture, customer preference,
financial constraints, and several other hard-to-define, project-specific parameters.
A WBS is simply a hierarchy of elements that decomposes the project plan into the discrete
work tasks. A WBS provides the following information structure:

 A delineation of all significant work
 A clear task decomposition for assignment of responsibilities
 A framework for scheduling, budgeting, and expenditure tracking

Many parameters can drive the decomposition of work into discrete tasks: product
subsystems, components, functions, organizational units, life-cycle phases, even geographies.
Most systems have a first-level decomposition by subsystem. Subsystems are then
decomposed into their components, one of which is typically the software.

10.1.1 CONVENTIONAL WBS ISSUES
Conventional work breakdown structures frequently suffer from three fundamental flaws.

1. They are prematurely structured around the product design.
2. They are prematurely decomposed, planned, and budgeted in either too much or

too little detail.
3. They are project-specific, and cross-project comparisons are usually difficult or

impossible.
Conventional work breakdown structures are prematurely structured around the product
design. Figure 10-1 shows a typical conventional WBS that has been structured primarily
around the subsystems of its product architecture, then further decomposed into the
components of each subsystem. A WBS is the architecture for the financial plan.
Conventional work breakdown structures are prematurely decomposed, planned, and
budgeted in either too little or too much detail. Large software projects tend to be over
planned and small projects tend to be under planned. The basic problem with planning too
much detail at the outset is that the detail does not evolve with the level of fidelity in the
plan.
Conventional work breakdown structures are project-specific, and cross-project comparisons

are usually difficult or impossible. With no standard WBS structure, it is extremely difficult
to compare plans, financial data, schedule data, organizational efficiencies, cost trends,
productivity trends, or quality trends across multiple projects.

Figure 10-1 Conventional work breakdown structure, following the product
hierarchy

Management
System requirement and design
Subsystem 1
 Component 11
 Requirements
 Design
 Code
 Test
 Documentation
 …(similar structures for other components)
 Component 1N
 Requirements
 Design
 Code
 Test

 Documentation
 …(similar structures for other subsystems)
Subsystem M
 Component M1
 Requirements
 Design
 Code
 Test
 Documentation
 …(similar structures for other components)
 Component MN
 Requirements
 Design
 Code
 Test
 Documentation
Integration and test
 Test planning
 Test procedure preparation
 Testing
 Test reports
Other support areas
 Configuration control
 Quality assurance
 System administration

10.1.2 EVOLUTIONARY WORK BREAKDOWN STRUCTURES
An evolutionary WBS should organize the planning elements around the process framework
rather than the product framework. The basic recommendation for the WBS is to organize
the hierarchy as follows:

 First-level WBS elements are the workflows (management, environment,
requirements, design, implementation, assessment, and deployment).

 Second-level elements are defined for each phase of the life cycle (inception,
elaboration, construction, and transition).

 Third-level elements are defined for the focus of activities that produce the artifacts
of each phase.

A default WBS consistent with the process framework (phases, workflows, and artifacts)
is shown in Figure 10-2. This recommended structure provides one example of how the
elements of the process framework can be integrated into a plan. It provides a
framework for estimating the costs and schedules of each element, allocating them
across a project organization, and tracking expenditures.

The structure shown is intended to be merely a starting point. It needs to be tailored to
the specifics of a project in many ways.

 Scale. Larger projects will have more levels and substructures.
 Organizational structure. Projects that include subcontractors or span multiple

organizational entities may introduce constraints that necessitate different WBS
allocations.

 Degree of custom development. Depending on the character of the project, there
can be very different emphases in the requirements, design, and implementation
workflows.

 Business context. Projects developing commercial products for delivery to a broad
customer base may require much more elaborate substructures for the deployment
element.

 Precedent experience. Very few projects start with a clean slate. Most of them are
developed as new generations of a legacy system (with a mature WBS) or in the
context of existing organizational standards (with preordained WBS expectations).

The WBS decomposes the character of the project and maps it to the life cycle, the
budget, and the personnel. Reviewing a WBS provides insight into the important
attributes, priorities, and structure of the project plan.
Another important attribute of a good WBS is that the planning fidelity inherent in each
element is commensurate with the current life-cycle phase and project state. Figure 10-3
illustrates this idea. One of the primary reasons for organizing the default WBS the way I
have is to allow for planning elements that range from planning packages (rough budgets that
are maintained as an estimate for future elaboration rather than being decomposed into
detail) through fully planned activity networks (with a well-defined budget and continuous
assessment of actual versus planned expenditures).

Figure 10-2 Default work breakdown structure
A Management
 AA Inception phase management
 AAA Business case development
 AAB Elaboration phase release specifications
 AAC Elaboration phase WBS specifications
 AAD Software development plan
 AAE Inception phase project control and status assessments
 AB Elaboration phase management
 ABA Construction phase release specifications
 ABB Construction phase WBS baselining
 ABC Elaboration phase project control and status assessments

 AC Construction phase management
 ACA Deployment phase planning
 ACB Deployment phase WBS baselining
 ACC Construction phase project control and status assessments
 AD Transition phase management
 ADA Next generation planning
 ADB Transition phase project control and status assessments
B Environment
 BA Inception phase environment specification
 BB Elaboration phase environment baselining
 BBA Development environment installation and administration
 BBB Development environment integration and custom toolsmithing
 BBC SCO database formulation
 BC Construction phase environment maintenance
 BCA Development environment installation and administration
 BCB SCO database maintenance
 BD Transition phase environment maintenance
 BDA Development environment maintenance and administration
 BDB SCO database maintenance
 BDC Maintenance environment packaging and transition
C Requirements
 CA Inception phase requirements development
 CCA Vision specification
 CAB Use case modeling
 CB Elaboration phase requirements baselining
 CBA Vision baselining
 CBB Use case model baselining
 CC Construction phase requirements maintenance
 CD Transition phase requirements maintenance
D Design
 DA Inception phase architecture prototyping
 DB Elaboration phase architecture baselining
 DBA Architecture design modeling
 DBB Design demonstration planning and conduct
 DBC Software architecture description
 DC Construction phase design modeling
 DCA Architecture design model maintenance
 DCB Component design modeling
 DD Transition phase design maintenance
E Implementation
 EA Inception phase component prototyping
 EB Elaboration phase component implementation
 EBA Critical component coding demonstration integration

 EC Construction phase component implementation
 ECA Initial release(s) component coding and stand-alone testing
 ECB Alpha release component coding and stand-alone testing
 ECC Beta release component coding and stand-alone testing
 ECD Component maintenance
F Assessment
 FA Inception phase assessment
 FB Elaboration phase assessment
 FBA Test modeling
 FBB Architecture test scenario implementation
 FBC Demonstration assessment and release descriptions
 FC Construction phase assessment
 FCA Initial release assessment and release description
 FCB Alpha release assessment and release description
 FCC Beta release assessment and release description
 FD Transition phase assessment
 FDA Product release assessment and release description
G Deployment
 GA Inception phase deployment planning
 GB Elaboration phase deployment planning
 GC Construction phase deployment
 GCA User manual baselining
 GD Transition phase deployment
 GDA Product transition to user

Figure 10-3 Evolution of planning fidelity in the WBS over the life cycle

 Inception Elaboration

WBS Element Fidelity WBS Element Fidelity
Management High Management High
Environment Moderate Environment High
Requirement High Requirement High
Design Moderate Design High
Implementation Low Implementation Moderate
Assessment Low Assessment Moderate
Deployment Low Deployment Low

WBS Element Fidelity WBS Element Fidelity
Management High Management High
Environment High Environment High
Requirements Low Requirements Low
Design Low Design Moderate
Implementation Moderate Implementation High
Assessment High Assessment High
Deployment High Deployment Moderate

 Transition Construction

10.2 PLANNING GUIDELINES
Software projects span a broad range of application domains. It is valuable but risky to make
specific planning recommendations independent of project context. Project-independent
planning advice is also risky. There is the risk that the guidelines may pe adopted blindly
without being adapted to specific project circumstances. Two simple planning guidelines
should be considered when a project plan is being initiated or assessed. The first guideline,
detailed in Table 10-1, prescribes a default allocation of costs among the first-level WBS
elements. The second guideline, detailed in Table 10-2, prescribes the allocation of effort and
schedule across the lifecycle phases.

10-1 Web budgeting defaults
First Level WBS Element Default Budget
Management 10%
Environment 10%
Requirement 10%
Design 15%
Implementation 25%
Assessment 25%
Deployment 5%
Total 100%

Table 10-2 Default distributions of effort and schedule by phase
Domain Inception Elaboration Construction Transition

Effort 5% 20% 65% 10%
Schedule 10% 30% 50% 10%

10.3 THE COST AND SCHEDULE ESTIMATING PROCESS
Project plans need to be derived from two perspectives. The first is a forward-looking, top-
down approach. It starts with an understanding of the general requirements and constraints,
derives a macro-level budget and schedule, then decomposes these elements into lower level
budgets and intermediate milestones. From this perspective, the following planning sequence
would occur:

1. The software project manager (and others) develops a characterization of the overall
size, process, environment, people, and quality required for the project.

2. A macro-level estimate of the total effort and schedule is developed using a
software cost estimation model.

3. The software project manager partitions the estimate for the effort into a top-level
WBS using guidelines such as those in Table 10-1.

4. At this point, subproject managers are given the responsibility for decomposing
each of the WBS elements into lower levels using their top-level allocation, staffing
profile, and major milestone dates as constraints.

The second perspective is a backward-looking, bottom-up approach. We start with the end in
mind, analyze the micro-level budgets and schedules, then sum all these elements into the
higher level budgets and intermediate milestones. This approach tends to define and
populate the WBS from the lowest levels upward. From this perspective, the following
planning sequence would occur:

1. The lowest level WBS elements are elaborated into detailed tasks
2. Estimates are combined and integrated into higher level budgets and milestones.
3. Comparisons are made with the top-down budgets and schedule milestones.

Milestone scheduling or budget allocation through top-down estimating tends to exaggerate
the project management biases and usually results in an overly optimistic plan. Bottom-up
estimates usually exaggerate the performer biases and result in an overly pessimistic plan.

These two planning approaches should be used together, in balance, throughout the life
cycle of the project. During the engineering stage, the top-down perspective will dominate
because there is usually not enough depth of understanding nor stability in the detailed task
sequences to perform credible bottom-up planning. During the production stage, there should
be enough precedent experience and planning fidelity that the bottom-up planning
perspective will dominate. Top-down approach should be well tuned to the project-specific
parameters, so it should be used more as a global assessment technique. Figure 10-4
illustrates this life-cycle planning balance.

Figure 10-4 Planning balance throughout the life cycle

Bottom up task level planning based on
metrics from previous iterations

Top down project level planning based on
microanalysis from previous projects

Engineering Stage Production Stage
Inception Elaboration Construction Transition

 Feasibility iteration Architecture iteration Usable iteration Product
 Releases

Engineering stage planning
emphasis

Production stage planning
emphasis

Macro level task estimation for
production stage artifacts

Micro level task estimation for
production stage artifacts

Micro level task estimation for
engineering artifacts

Macro level task estimation for
maintenance of engineering artifacts

Stakeholder concurrence Stakeholder concurrence
Coarse grained variance analysis of
actual vs planned expenditures

Fine grained variance analysis of actual
vs planned expenditures

Tuning the top down project
independent planning guidelines into
project specific planning guidelines

WBS definition and elaboration

 10.4 THE ITERATION PLANNING PROCESS
Planning is concerned with defining the actual sequence of intermediate results. An
evolutionary build plan is important because there are always adjustments in build content
and schedule as early conjecture evolves into well-understood project circumstances.
Iteration is used to mean a complete synchronization across the project, with a well-
orchestrated global assessment of the entire project baseline.
 Inception iterations. The early prototyping activities integrate the foundation

components of a candidate architecture and provide an executable framework for
elaborating the critical use cases of the system. This framework includes existing
components, commercial components, and custom prototypes sufficient to
demonstrate a candidate architecture and sufficient requirements understanding to
establish a credible business case, vision, and software development plan.

 Elaboration iterations. These iterations result in architecture, including a complete
framework and infrastructure for execution. Upon completion of the architecture
iteration, a few critical use cases should be demonstrable: (1) initializing the architecture,
(2) injecting a scenario to drive the worst-case data processing flow through the system
(for example, the peak transaction throughput or peak load scenario), and (3) injecting a
scenario to drive the worst-case control flow through the system (for example,
orchestrating the fault-tolerance use cases).

 Construction iterations. Most projects require at least two major construction iterations:
an alpha release and a beta release.

 Transition iterations. Most projects use a single iteration to transition a beta release into
the final product.

The general guideline is that most projects will use between four and nine iterations. The

typical project would have the following six-iteration profile:

 One iteration in inception: an architecture prototype
 Two iterations in elaboration: architecture prototype and architecture baseline
 Two iterations in construction: alpha and beta releases
 One iteration in transition: product release

 A very large or unprecedented project with many stakeholders may require additional
inception iteration and two additional iterations in construction, for a total of nine iterations.

10.5 PRAGMATIC PLANNING
Even though good planning is more dynamic in an iterative process, doing it accurately is far
easier. While executing iteration N of any phase, the software project manager must be
monitoring and controlling against a plan that was initiated in iteration N - 1 and must be
planning iteration N + 1. The art of good project· management is to make trade-offs in the
current iteration plan and the next iteration plan based on objective results in the current
iteration and previous iterations. Aside from bad architectures and misunderstood
requirements, inadequate planning (and subsequent bad management) is one of the most
common reasons for project failures. Conversely, the success of every successful project can
be attributed in part to good planning.
A project's plan is a definition of how the project requirements will be transformed into' a
product within the business constraints. It must be realistic, it must be current, it must be a
team product, it must be understood by the stakeholders, and it must be used. Plans are not
just for managers. The more open and visible the planning process and results, the more
ownership there is among the team members who need to execute it. Bad, closely held plans
cause attrition. Good, open plans can shape cultures and encourage teamwork.

Unit – Important Questions

1. Define Model-Based software architecture?
2. Explain various process workflows?
3. Define typical sequence of life cycle checkpoints?
4. Explain general status of plans, requirements and product across the major milestones.

 5. Explain conventional and Evolutionary work break down structures?
 6. Explain briefly planning balance throughout the life cycle?

Project Organizations and Responsibilities:

 Organizations engaged in software Line-of-Business need to support projects with

the infrastructure necessary to use a common process.
 Project organizations need to allocate artifacts & responsibilities across project team

to ensure a balance of global (architecture) & local (component) concerns.
 The organization must evolve with the WBS & Life cycle concerns.
 Software lines of business & product teams have different motivation.
 Software lines of business are motivated by return of investment (ROI), new

business discriminators, market diversification & profitability.
 Project teams are motivated by the cost, Schedule & quality of specific

deliverables

1) Line-Of-Business Organizations:
 The main features of default organization are as follows:

• Responsibility for process definition & maintenance is specific to a cohesive
line of business.

• Responsibility for process automation is an organizational role & is equal in
importance to the process definition role.

• Organizational role may be fulfilled by a single individual or several different
teams.

Fig: Default roles in a software Line-of-Business Organization.

Software Engineering Process Authority (SEPA)
 The SEPA facilities the exchange of information & process guidance both to & from
project practitioners

This role is accountable to General Manager for maintaining a current
 assessment of the organization’s process maturity & its plan for future improvement
 Project Review Authority (PRA)
 The PRA is the single individual responsible for ensuring that a software project
complies with all organizational & business unit software policies, practices &
standards

A software Project Manager is responsible for meeting the requirements of a contract
or some other project compliance standard

Software Engineering Environment Authority(SEEA)

 The SEEA is responsible for automating the organization’s process, maintaining the
organization’s standard environment, Training projects to use the environment &
maintaining organization-wide reusable assets
 The SEEA role is necessary to achieve a significant ROI for common process.
 Infrastructure
 An organization’s infrastructure provides human resources support, project-
independent research & development, & other capital software engineering assets.

2) Project organizations:

• The above figure shows a default project organization and maps project-level
roles and responsibilities.

• The main features of the default organization are as follows:
• The project management team is an active participant, responsible for

producing as well as managing.
• The architecture team is responsible for real artifacts and for the integration

of components, not just for staff functions.
• The development team owns the component construction and maintenance

activities.
• The assessment team is separate from development.
• Quality is everyone’s into all activities and checkpoints.
• Each team takes responsibility for a different quality perspective.

3) EVOLUTION OF ORGANIZATIONS:

Artifacts Activities

 Business case Customer interface, PRA interface
 Software development plan Planning, monitoring
 Status assessments Risk management

 Software process definition
 Process improvement

Figure 11-2. Default project organization and responsibilities

Software Management

Software Development Software Assessment Software Architecture

Administration System engineering

Software
Management

50%

Software
Management

10%

Inception

Elaboration

Transition

Construction

Inception:
Software management: 50%
Software Architecture: 20%
Software development: 20%
Software Assessment
(measurement/evaluation):10%

Elaboration:
Software management: 10%
Software Architecture: 50%
Software development: 20%
Software Assessment
(measurement/evaluation):20%

Construction:
Software management: 10%
Software Architecture: 10%
Software development: 50%
Software Assessment
(measurement/evaluation):30%

Transition:
Software management: 10%
Software Architecture: 5%
Software development: 35%
Software Assessment
(measurement/evaluation):50%

The Process Automation:

Introductory Remarks:
The environment must be the first-class artifact of the process.
Process automation & change management is critical to an iterative process. If the change is
expensive then the development organization will resist it.
 Round-trip engineering & integrated environments promote change freedom & effective
evolution of technical artifacts.
Metric automation is crucial to effective project control.
External stakeholders need access to environment resources to improve interaction with the
development team & add value to the process.
The three levels of process which requires a certain degree of process automation for the
corresponding process to be carried out efficiently.
Metaprocess (Line of business): The automation support for this level is called an
infrastructure.

Software
Assessment

50%

Software
Management

10%

Software
Development

35%

Software
Architecture

5%

Software
Assessment

10%

Software
Development

20%

Software
Architecture

20%

Software
Assessment

20%

Software
Development

20%

Software
Architecture

50%

Software
Management

10%

Software
Assessment

30%

Software
Development

50%

Software
Architecture

10%

Macroproces (project): The automation support for a project’s process is called an
environment.
Microprocess (iteration): The automation support for generating artifacts is generally called
a tool.

Tools: Automation Building blocks:
Many tools are available to automate the software development process. Most of the
core software development tools map closely to one of the process workflows
Workflows Environment Tools & process Automation

Management Workflow automation, Metrics automation
Environment Change Management, Document Automation
Requirements Requirement Management
Design Visual Modeling
Implementation -Editors, Compilers, Debugger, Linker, Runtime
Assessment -Test automation, defect Tracking
Deployment defect Tracking

PROCESS AUTOMATION

The Project Environment:
The project environment artifacts evolve through three discrete states.
(1)Prototyping Environment.(2)Development Environment.(3)Maintenance Environment.
The Prototype Environment includes an architecture test bed for prototyping project
architecture to evaluate trade-offs during inception & elaboration phase of the life cycle.
 The Development environment should include a full suite of development tools needed to support various
Process workflows & round-trip engineering to the maximum extent possible.
The Maintenance Environment should typically coincide with the mature version of the
development.
There are four important environment disciplines that are critical to management context &
the success of a modern iterative development process.
Round-Trip engineering
Change Management
Software Change Orders (SCO)
Configuration baseline Configuration Control Board
 Infrastructure
Organization Policy
Organization Environment
Stakeholder Environment.

Round Trip Environment
Tools must be integrated to maintain consistency & traceability.
Round-Trip engineering is the term used to describe this key requirement for environment
that support iterative development.
As the software industry moves into maintaining different information sets for the
engineering artifacts, more automation support is needed to ensure efficient & error free
transition of data from one artifacts to another.
Round-trip engineering is the environment support necessary to maintain Consistency among
the engineering artifacts.

Change Management
Change management must be automated & enforced to manage multiple iterations & to
enable change freedom.
Change is the fundamental primitive of iterative Development.
I. Software Change Orders
The atomic unit of software work that is authorized to create, modify or obsolesce
components within a configuration baseline is called a software change orders (SCO)
The basic fields of the SCO are Title, description, metrics, resolution, assessment &
disposition

Change management
II.Configuration Baseline
A configuration baseline is a named collection of software components &Supporting
documentation that is subjected to change management & is upgraded, maintained,
tested, statuses & obsolesced a unit
There are generally two classes of baselines
External Product Release
Internal testing Release
Three levels of baseline releases are required for most Systems
 1. Major release (N)
2. Minor Release (M)
3. Interim (temporary) Release (X)
Major release represents a new generation of the product or project

A minor release represents the same basic product but with enhanced features,
performance or quality.
 Major & Minor releases are intended to be external product releases that are
persistent & supported for a period of time.
An interim release corresponds to a developmental configuration that is intended to
be transient.
Once software is placed in a controlled baseline all changes are tracked such that a
distinction must be made for the cause of the change. Change categories are
 Type 0: Critical Failures (must be fixed before release)
Type 1: A bug or defect either does not impair (Harm) the usefulness of the system or
can be worked around
 Type 2: A change that is an enhancement rather than a response to a defect
Type 3: A change that is necessitated by the update to the environment
Type 4: Changes that are not accommodated by the other categories.
Change Management
III Configuration Control Board (CCB)
A CCB is a team of people that functions as the decision
 Authority on the content of configuration baselines
A CCB includes:
1. Software managers
2. Software Architecture managers
 3. Software Development managers
4. Software Assessment managers
 5. Other Stakeholders who are integral to the maintenance of the controlled
software delivery system?
Infrastructure
 The organization infrastructure provides the organization’s capital assets
including two key artifacts - Policy & Environment
I Organization Policy:
A Policy captures the standards for project software development processes
The organization policy is usually packaged as a handbook that defines the life cycles
& the process primitives such as
 Major milestones
 Intermediate Artifacts
 Engineering repositories
 Metrics
 Roles & Responsibilities

Infrastructure
 II Organization Environment
The Environment that captures an inventory of tools which are building blocks from
which project environments can be configured efficiently & economically

Stakeholder Environment
Many large scale projects include people in external organizations that represent other
stakeholders participating in the development process they might include
 Procurement agency contract monitors
 End-user engineering support personnel
 Third party maintenance contractors
 Independent verification & validation contractors
 Representatives of regulatory agencies & others.

These stakeholder representatives also need to access to development resources so that
they can contribute value to overall effort. These stakeholders will be access through
on-line
An on-line environment accessible by the external stakeholders allow them to
participate in the process a follows
Accept & use executable increments for the hands-on evaluation.
 Use the same on-line tools, data & reports that the development organization uses to
manage & monitor the project
Avoid excessive travel, paper interchange delays, format translations, paper *
shipping costs & other overhead cost

